09-16: Siddharth, Jake, and Hari’s paper on data storage in diamond accepted in Science Advances. Way to go!

The negatively-charged nitrogen-vacancy (NV) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Although most work so far has focused on the NV optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV rich, type-1b diamond. As a proof of principle, we use multi-color optical microscopy to read, write, and reset arbitrary data sets with 2-D binary bit density comparable to present digital-video-disk (DVD) technology. Leveraging on the singular dynamics of NV ionization, we encode information on different planes of the diamond crystal with no cross talk, hence extending the storage capacity to three dimensions. Further, we correlate the center’s charge state and nuclear spin polarization of the nitrogen host, and show that the latter is robust to a cycle of NV ionization and recharge. In combination with super-resolution microscopy techniques, these observations provide a route towards sub-diffraction NV charge control, a regime where the storage capacity could exceed present technologies.

Leave a Reply

Your email address will not be published. Required fields are marked *